Branch and bound method for regression-based controlled variable selection
نویسندگان
چکیده
Self-optimizing control is a promising method for selection of controlled variables (CVs) from available measurements. Recently, Ye et al. [2012] have proposed a globally optimal method for selection of self-optimizing CVs by converting the CV selection problem into a regression problem. In this approach, the necessary conditions of optimality (NCO) are approximated with linear combinations of available measurements over the entire operation region. In practice, it is desired that a subset of available measurements be combined as CVs to obtain a good trade-off between the economic performance and the complexity of control system. The subset selection problem, however, is combinatorial in nature, which makes the application of the globally optimal CV selection method to large-scale processes difficult. In this work, an efficient branch and bound (BAB) algorithm is developed to handle the computational complexity associated with the selection of globally optimal CVs. The proposed BAB algorithm identifies the best measurement subset such that the regression error in approximating NCO is minimized and is also applicable to the general regression problem. Numerical tests using randomly generated matrices and a binary distillation column case study demonstrate the computational efficiency of the proposed BAB algorithm.
منابع مشابه
Branch and Bound Methods for Control Structure Design
We demonstrate the potential of branch and bound methods for handling the combinatorial problems arising in control structure design. The method efficiently solves large-scale benchmark problems for selection of controlled variables using minimum singular value rule and variable selection for stabilization. We also provide an overview of some other interesting problems that can be solved in the...
متن کاملBidirectional branch and bound for controlled variable selection. Part II: Exact local method for self-optimizing control
The selection of controlled variables (CVs) from available measurements through enumeration of all possible alternatives is computationally forbidding for large-dimensional problems. In Part I of this work [5], we proposed a bidirectional branch and bound (BAB) approach for subset selection problems and demonstrated its efficiency using the minimum singular value criterion. In this paper, the B...
متن کاملBidirectional branch and bound for controlled variable selection: Part I. Principles and minimum singular value criterion
The minimum singular value (MSV) rule is a useful tool for selecting controlled variables (CVs) from the available measurements. However, the application of the MSV rule to large-scale problems is difficult, as all feasible measurement subsets need to be evaluated to find the optimal solution. In this paper, a new and efficient branch and bound (BAB) method for selection of CVs using the MSV ru...
متن کاملA matrix method for estimating linear regression coefficients based on fuzzy numbers
In this paper, a new method for estimating the linear regression coefficients approximation is presented based on Z-numbers. In this model, observations are real numbers, regression coefficients and dependent variables (y) have values for Z-numbers. To estimate the coefficients of this model, we first convert the linear regression model based on Z-numbers into two fuzzy linear regression mode...
متن کاملPrediction of the adsorption capability onto activated carbon of liquid aliphatic alcohols using molecular fragments method
Quantitative structure-property relationship (QSPR) for estimating the adsorption of aliphatic alcohols onto activated carbon were developed using substructural molecular fragments (SMF) method. The adsorption capacity of activated carbon (gr/100grC) for 150 aliphatic alcohols onto activated carbon (AC) is studied under equilibrium conditions. Forward and backwards stepwise regression variable ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Chemical Engineering
دوره 54 شماره
صفحات -
تاریخ انتشار 2013